Warning : session_start(): Unable to clear session lock record in /home/www1/www1/1/5/www.v114.net2026/chapter.php on line 3
Warning : session_start(): Failed to read session data: memcached (path: 127.0.0.1:11211) in /home/www1/www1/1/5/www.v114.net2026/chapter.php on line 3
第52章 我!陆时羡!宝刀未老(1/2)_重启2007,从学霸到学阀_三江阁
第52章 我!陆时羡!宝刀未老(1/2)
第一题是一道代数题,an是一道多项式之和,求证:当正整数n≥2时,a(n+1)<an。 刚看见这题的时候,陆时羡还有些没有思路,于是一下子就顿在那里了。 毕竟纯粹的代数题,非常考验人的逻辑联系思维能力。 难道连第一道证明题都做不出来?这已经是最简单的了。 陆时羡忽然紧张起来,如果连第一题都做不出来,绝对是对他后面题目解答的一个巨大打击。 他轻吐一口气,慢慢迫使自己平静下来。 越是紧张越不能着急。 陆时羡再次审题,忽然发现自己陷入了一个误区,证明这种比大小的题目,何必将其分别代入后再比呢? 他只需要转换一下思维方式。 a与b比大小也可以转换成a与b比差或者a与b比商。 如果a-b最后的结果大于零,或者a/b的结果大于1,那就可以说明a大于b. 想到这,陆时羡的眼睛越来越亮。 他在草稿纸上飞快地验算,对于an式,可以利用乘法分配律将n+1单独分离出来。 再得出对任意的正整数n≥2,an-a(n+1)最后的简化式。 最后证明简化式大于零。 故a(n+1)<an。 此题得证。 将这道题解决,陆时羡长松一口气,开始看下一题。 第二题是一道平面解析几何。 题目大意是对勾函数和一条直线得到的两个交点,然后求交点在对勾函数上两条切线的交点轨迹是多少? 不得不说,如果逻辑思维能力不够,光是看题目就足够让你看晕了。 不过说起来,这种题还是陆时羡的强项,他在数学里最擅长的就是将图形转化成代数。 无非就是求交点的坐标。 根据给出的条件联立方程组,由题意知,该方程在(0,+∞)上有两个相异的实根x1、x2,故k≠1,且Δ(1)式=1+4(k?1)>0,两个实根之和(2)式与之积(3)式都大于零。 由此可以得出直线的斜率k的取值范围,最后对对勾函数进行求导 化简得到直线l1和l2的方程(4)式和(5)式 (4)式-(5)式得x的函数表达式(6)式 将(2)(3)两式代入(6)式得x=2 (4)式+(5)式得y的函数表达式(7)式 将(2)(3)的组合式代入(7)式得2y=(3?2k)x+2,而x=2,得y=4?2k 根据斜率k的取值范围2<y<2.5 即点的轨迹为(2,2),(2,2.5)两点间的线段(不含端点) 陆时羡写完这题,考试时间已经只剩下四十分钟了。 第二道大题还真的不难,思路很简单,就是计算过程有些复杂,同时也比较费时间,光这一个题目就花了他几十分钟。 来不及吐槽,陆时羡赶紧望向第三大题, 设函数f(x)对所有的实数x都满足f(x+2π)=f(x)。 求证:存在4个函数fi(x)(i=1,2,3,4)满足: (1)对i=1,2,3,4,fi(x)是偶函数,且对任意的实数x,有fi(x+π)=fi(x); (2)对任意的实数x,有f(x)=f1(x)+f2(x)cosx+f3(x)sinx+f4(x)sin2x。 题目看起来非常简洁,可是陆时羡知道最后的解答过程是题目的数倍,可能还不止。 时间不多,陆时羡决定先解决第一题。 陆时羡用屁股想都明白,凡是跟圆周率π挨上边的基本上就跟周期函数挂钩了。 他直接策反了敌方f(x)两员大将的g(x)与h(x),且g(x)是偶函数,h(x)是奇函数,对任意的x∈r,g(x+2π)=g(x),h(x+2π)=h(x)。 然后分别代入四条函数fi(x),i=1,2,3,4。得到四条函数f1(x)、f2(x)、f2(x)、f4(x)的表达式。 故fi(x),i=1,2,3,4是偶函数,且对任意的x∈r,fi(x+π)=fi(x)。 这个倒是简单,极有限次数的验证只需要分别代入验证就行了,不费脑子。 陆时羡觉得只要次数在10以下,他都能接受,无非就是费点笔芯而已。 毕竟总比看半天题目无从下手的强。 不过此题好像还是给了参赛者一些余地,因为陆时羡发现第二问与第一问的关联很大。 将刚刚第一问得到的代数式代入f(x)=f1(x)+f2(x)cosx+f3(x)sinx+f4(x)sin2x 接下来,分情况讨论就完事了。 因 本章未完,请翻下一页继续阅读.........
权宠之大牌星妻
红楼之剑天外来
春风无边:帝君狠妖娆
超强兵王
我是大土匪
与鬼为伍
撕婚书时你心高气傲,我成神医你哭什么
旋风少女
我在法兰西当王太子
尖叫无限